
NASA-CR-192731

_CHNICAL REPORTS

DNIVERSITY COLLECTION

_ I R..c_-F_..

TEBNICALREPORTS

(NASA-CR-IgZ731) ANALYTIC

FORMULATION O_ INTELLIGENT

AS NEURAL NETS (Rensselaer

Polytechnic Inst.) 8 p

MACHINES

N93-71635

Unclas

Z9/63 0153766

j_ /, '/ 'j'j

Center for Intelligent
Robotic Systems
for Space Exploration

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

fee..hal e_l Reports

JCl_J.neez':L,_g and Physleal Selences Ltbeu.-_



ANALYTIC FORMULATION OF
INTELLIGENT MACHINES AS

NEURAL NETS

By:

G.N. Saridis
M.C. Moed

Department of Electrical, Computer and Systems Engineering
Department of Mechanical Engineering, Aeronautical

Engineering & Mechanics
Rensselaer Polytechnic Institute

Troy, New York 12180-3590

CIRSSE Document #1



ANALYTIC FORMULATION OF INTELLIGENT

MACHINES AS NEURAL NETS

George N. Saridls

and Michael C. Moed

Robotics and Automation Laboratories

Electrical. Computer and Systems Engineering Department

Rensselaer Polytechnic Institute

Troy, New York 12180-3590

ABSTRACT

Recent technological developments have fostered a need for the de-

velopment and utilization of machines which contain enough intelligence

to perform autonomous tasks in uncertain environments. Concepts

drawn from the fields of Artificial Intelligence. Operations Research and

Control Theory have been combined to form a unified theory which

analytically describes the design and structure consisting of Organiza-

tion. Coordination and Execution levels forms the architecture of the

Machine under the Principle of Increasing Precision with Decreasing In-

telligence from hierarchically intelligent control. This system has been

formulated as a probabilistic model, where uncertainty and imprecision

can be expressed in terms of entropies, The optimal strategy for de-

cision planning and task execution by the Intelligent Machine can be

found by minimizing the total entropy in the system.

This paper focuses on the design of the Organization Level of the

Intelligent Machine as a Boitzmann machine, as described in current

neural network literature. Since this level is responsible for planning the

actions of the Machine. the problem at this tier is formulated as the

construction of the right sequence of tasks or events which minimizes

the entropy for the desired action. A search algorithm is presented

which examines the weights and connections of the events in order to

efficiently find the desired action sequence.

1. INTRODUCTION

In our present technological society, there is a major need to build

machines that would execute intelligent tasks operating in uncertain en-

vironments with minimum interaction with a human operator, AlthouRh

",u.le de._ignurs have built smart robots, utilizing heuristic ideas, there

is no systematic approach to design such machines in an engineering

manner.

Recently. cross-dlsciplinary research from the fields of computers.

systems. AI and information theory has served to set the foundations

of the emerging area of the Design of Intelligent Machines (Saridis.

Stephanou 1977).

Since 1977 Saridis has been developing a novel approach, defined

as Hierarchical Intelligent Control. designed to organize, coordinate and

execute anthropomorphic tasks by a machine with minimum int_ractlon

with a human operator. This approach utilizes analytical (probabifistic)

models to describe and control the various functions of the Intelligent

Machine structured by the intuitively defined principle of Increasing Pre-

cision with Decreasing Intelligence (IPDI) (Saridis lg7g).

This principle, even though resembles the managerial structure of

organizational systems (Levis 1988). has been derived on an analytic

basis by Saridis (1988). The impact of this work is in the enjzineerin_

design of intelligent robots, since it provides analytic techniques for

universal production (blueprints) of such machines.

The purpose of the paper is to derive analytically a Boltzmann ma-

chine suitable for optimal connection of nodes in a neural net (Fahlman.

Hinton. Sejnowski, 1985). Then this machine will serve to search for

the optimal design of the Organization level of an intelligent Machine.

In order to accomplish this. some mathematical theory of the in-

telligent machines will be first outlined. Then some definitions of the

variables associated with the principle, llke machine intelligence, ma-

chine knowledge, and precision will be made. A list of such definitions

is given in the section that follows. (Saridis. Valavanis 1988). Then a

procedure to establish the Boltzmann machine on an analytic basis will

be presented and illustrated by an example in designing the organization

level of an Intelligent Machine.

2. THE MATHEMATICAL THEORY OF INTELLIGENT CON-

TROLS

In order to design intelligent machines that require for their op-

eration control system with intelligent functions such as simultaneous

utilization of a memory, learning, or multilevel decision making in re-

sponse to "fuzzy" or qualitative commands. IntelliGent (;9ntrol_ have

been developed by Saridis (1977. lg83). They utilize the results of

cognitive systems research effectively with various mathematical pro-

gramming control techniques (Birk & Kelley, 1981}.

The theory of Intelligent Control systems, proposed by Saridis

(lg7g) combines the powerful high-level decision making of the digital

computer with advanced mathematical modeling and synthesis tech-

niques of system theory with linguistic methods of dealing with impre-

cise or incomplete information. This produces a unified approach suit-

able for the engineering needs of the future. The theory may be thought

ul :,_ the ru'_ult ul the intcr,_ectiull of the thr©© II_aiur di_cipli,_ u[

Artificial Intelligenc_. ODeratlons Rese._rch and (;ontr01 Theory. This

research is aimed to establish Intelligent Controls as an engineering

discipline, and it plays a central role in the design of Intelligent Au-
tonomous Systems.

Intelligent control can be considered as a fusion between the math-

ematical and linguistic methods and algorithms applied to systems and

processes. In order to solve the modern technological problems that

require control systems with intelligent functions such as simultaneous

utilization of a memory, learning, or multilevel decision making in re-

sponse to "fuzzy" or qualitative commands. Intelligent Control is the

process of implementation of an Intelligent Machine and would require

a combination of "machine intelligent functions" for task organization
purposes with system theoretic methods for their execution.

The control intelligence is hierarchically distributed accord-

ing to the Princinle of Increasing Precision with Decreasing Intellic[en_:q

(IPDI). evident in all hierarchical management systems. They are com-

posed of three basic levels of controls even though each level may con-

tain more than one layer of tree-structured functions (Figure 1):



1.Theorg._nizationlevel.

2. The coordination level.

3. The execution level.

The Oreanizati9n I.evet is intended to perform such operations as

planning and high level decision making From lonf term memories. It

may require high level information processing such as the knowledge

based systems encountered in Artificial Intelligence. These require lathe

quantities of knowledge processing but require little or no precision.

The functions involved in the upper levels of an intelligent ma-

chine are imitating functions of human behavior and may be treated

as elements of knowled_ze-based systems. Actually, the activities of

planning, decision making, learning, data storage and retrieval, task

coordination, etc. may be thought of as knowledge handling and man-

agement. Therefore. the flow of knowledge in an intelligent machine

may be considered as the key variable of such a system.

KnowledJze flow in an intelfigent machine's organization level rep-

resents respectively:

1. Data Handling and Management.

2. Planning and Decision performed by the central processing

units.

3. Sensing and Data Acquisition obtained through peripheral de-

vices.

4. Formal Languages which define the software.

Subjective probabilistic models or fuzzy sets are assigned to the

individual functions. Thus. their _ may be evaluated for every

task executed. This provides an analytical measure of the total activity.

Artificlal Intelllgence methods also applicable for the processing of

knowledge and knowledge rates of the organization level of an intelligent

machine have been developed by Meystel (1985) and his colleagues.

The Coordination Level is an intermediate structure serving as an

interface between the organization and execution level.

It is involved with coordination, decision making and learning on

a short term memory, e.g.. a buffer. It may utilize linguistic de-

ci_iqn schemata with learning capabilities defined in Saridis and Graham

(1984), and assign subjective probabilities for each action. The respec-

tive entropies may be obtained directly from these subjective probabil-

ities.

The Execution Level executes the appropriate control functions.

its performance measure can also be expressed as an entropy, thus

unifying the functions of an "intelligent machine'.

Optimal control theory utilizes a non-negative functional of the

states of a system in the states space, and a specific control from the set

of all admissible controls.to define the performance measure for some

initial conditions (=(t),t), representing a generalized energy function.

Minimization of the energy functional yields the desired control law for

the system.

For an appropriate density function p(z,u(z,t),t) satisfying

Jaynes" Maximum entropy principle (1957), it was shown by Saridis

(1988) that the entropy for a particular control action u(z,t).

HCf)=/n. pC_,u(_,t),t)tnp(:,.(t),t)_-

is equivalent to the expected energy or cost functional of the system.

Therefore. minimization of" the entropy H(u) yields the optimal control

law of the systems.

This statement establishes equivalent measures between informa-

tion theoretic and optimal control problems and unifies both information

and feedback control theories with a common measure of performance.

Entropy satisfies the additive property, and any system composed of

a combination of such subsystems can be optimized by minimizing its

total entropy. Information theoretic methods based on entropy may

apply (Conant 1976).

Since all levels of a hierarchical intelligent control can be measured

by entropies and their rates, then the optimal operation of an "intelli-

gent machine" can be obtained through the solution of mathematical

programming problems.

The various aspects of the theory of hierarchically intelligent con-

trois may be summarized as follows:

The theory of ;ntelfizent machines may be eostul_te4 as the

mathematical oroblem of findin2 the rilht sequence of de¢i_ion_

and controls for a system structured accordinf to the orinciol_ qf
increasin_ orecision with decreasinE ;ntellilence _¢onstraint) such

that it minimizes its total entronv.

The above analytic formulation of the "intelligent machine prob-

lem" as a hierarchically intelligent control problem is based on the use

of" entropy as a measure of performance at all the levels of the hierar-

chy. It has many advantages because of the tree-like structure of the

decision making process, and bringstogether functions that belong to

a variety of disciplines.

3. KNOWLEDGE FLOW AND THE PRINCIPLE OF IPOI

The concept of entropy used in this paper may be generalized if one

introduces theory of evidence for the cases that Intelligent Machines are

endowed with judgment, a very human property.

The general concepts of Intelligent Control Systems are the funda-

mental notions of Machine Intelligence. Machine Knowledge. its Rate

and Precision. The following definitions are useful in order to derive

the principle of IPDI.

Def.[ Machine Knowledge Ja defined to be the

etructured information acquired and applied to remove

ignorance or uncertainty about a apecific task pertainlng

to the Intelligent Machine.

Knowledge is a cumulative quantity accrued by the machine and cannot

be used as a variable to execute a task. Instead, the Rate of Machine

Knowledge is a suitable variable.

Def. 2 Rate of Machine Knowledge is the flow of

knowledge through an Intelligent Machine.

Intelligence is defined by the American Heritage Dictionary of the

English Language (1969) as: Intelligence is the capacity to acquire and

apply knowledge.

In terms of Machine Intelligence, this definition may be modified

to yield:

Def. 3 Machine Intelligence (MI) is the variable

(source) which operates on a data-base (DB) of events

to produce flow of knowledge (RK)

One may directly apply the Law of Partition of Information Rates

of Conant (1976) to analyze the functions of intelligence within the

activities of an Intelligent Control System.

On the other hand. one may define Precision as follows:

Def. 4 |mprecislon is the uncertainty of execution

of the various tasks of the Intelligent Machine.

and

Def. 5 Precision is the complement of Imprecision,

and represents the complexity of a process.

Analytically. the above relations may be summarized as follows:

Knowledge (K) representing a type of information may be repre-

sented as

K = -_, - Inp(K) = (Energy) (I)

where p(K) is the probability density of Knowledge.

From equation (1) the probability density function p(K) satisfies

the following expression in agreement with Jaynes' principle of Maxi-

mum Entropy (1957):

p(K)= e-'-'c;_ = in/ e-'C_ (2)

The Rate of Knowledge R which is the main variable of an intelligent
machine with discrete states is

X = (Power)R=_

It was intuitively thought (Sarldis 1983). that the Rate of Knowl-



edge must satisfy the following relation which may be thought
of expressing the principle of Increasin_ Precision with Decreasin_
Intelff_ence

CM:) :(DB)-- CR) C_)

A special case with obvious interpretation is. when R is fixed, machine
intelligence is largest for a smaller data base e.g. complexity of the
process. This is in agreement with Vamos" theory of Metalanguages

(1986).
It is interesting to notice the resemblance of this entropy formula-

tion of the Intelligent Control Problem with the e-entropy formulation

of the metric theory of complexity originated by Kolomagorov (1956)
and applied to system theory by Zames (lgTg). Both methods im-
ply that an increase in Knowledge (feedback) reduces the amount of

entropy (e-entropy) which measures the uncertainty involved with the
system.

An analytic formulation of the above principle has been derived
from simple probabilistic relation among the Rate of Knowledge. Ma-
chine Intelligence and the Data Base of Knowledge. The entropies of
the various functions come naturally into the picture as a measure of
their activities.

4. THE DESIGN OF THE ORGANIZATION LEVEL OF AN IN-
TELLIGENT MACHINE AS A BOLTZMANN MACHINE

In the current literature of parallel architectures for Machine Intel-
I{gence. the Boltzmann machine represents a powerful, neural network
based architecture that allows efficient searches to optimally obtain
the combination of certain hypotheses of input data and constraints
(Fahlman. Hinton. Sejnowski 1985).

The Boltzmann architecture may be interpreted as the machine

that searches for the optimal interconnection of several nodes (neu-
rons) representing different primitive events in order to produce a string
defining an optimal task. Such a device may prove extremely useful for

the design of the Organization Level of an Intelligent Machine. (Saddis.
Valavanls 1988). (Figure 2)

We associate the state of each node with a binary random variable
z_ = {0, 1}. with a priori probabilities pC:_ : 1) : Pl , p(x_ : O) =
1 -p;. where I represents the firing of neuron i. and 0 indicates neuron

i idle. The state vector of the network. X = {=z,=2 ..... z_,... ,=,_}
is an ordered set of O's and l"s describing the state of the machine
in terms of firing/idle nodes, for an n node machine. The neurons of

the machine can be visible, or hidden (Hinton. Sejnowksi 1985). It
is possible to extract the string of primitive events representing the
optimal task by examining the state vector of the visible nodes in the
network in steady state response to a given input.

5. ENTROPY AS A MEASURE OF UNCERTAINTY

Entropy is used as a measure of uncertainty in the intelligent ma-
chine. The entropy manifests itself in the interaction and interconnec-

Lion of nodes in the newark. We can define the energy of tlow of
knowledge from node 3"to i by:

1
_, = _,i=,:_ (4)

where w. = 0. which is analogous to Hopfield's neurological model
CHopfield 1982).

The Probability of Knowledge flow from node 3"to z"is:

p(R_._) = • -°'-'}'''='.' from (2) (5)

where e_ > 0 is the.probability normalizing factor.

The Entropy of Knowledge Flow from node 3"to i is:

H(.%) = -pC_;)I_{_(rW)}

or:

1 " -_z wlW _z

H(,_.) = (_, + _,i:,:i)e ' _ " ' ' (7)

Ifzl or zi=O:

Iz(r_,i)= _,e-°' (8)

which can be called the Threshold Node Entropy of node i.

Ifz_ and z_ : 1:

1 -o - w

Similarly. the Entropy of the Flow of Knowledge into node z"is:

: + (e-',-Z;,',,',',) (z01

H(._) = ,,, + _ _ _,_:,:,, •-°' e- ½"'"" (ii)

The Entropy of Flow of Knowledge in the Intelligent Machine is:

With the uncertainty of the network measured, the reduction of
the Entropy of Knowledge Flow must be examined. Each node i has

a Threshold Node Entropy associated with it, as shown in (8). This
Threshold Node Entropy can also be found by setting z i = 0 for all
nodes 3. CJ :_ 1) in (11). The Threshold Node Entropy is the entropy
of a node when no knowledge llows into the node. It is necessary
to assert some nodes jz,... ,jk which connect to node i such that the
Entropy of the Flow of Knowledge into node i is less than the Threshold
Node Entropy of i. in order to reduce the entropy in the machine. This

corresponds to the reduction of uncertainty in the machine through
knowledge acquisition.

Form (8) and (g) we can show that the Entropy of Knowledge Flow

from node 3. to node z"will be less than the Threshold Node Entropy of
node i under the following condition:

aie-=' > loti + _mtil le .... _ua_ I

+1(o, Ol.-'"')
Then:

e½"', - I

So if ._,=d -'- 1. both nodes will be asserted and the Entropy Flow from
Node j to node i will be less than the Threshold Node Entropy of i
when (14) ho_ds. For example, given:

usi_.:0.8 , then _:0.813
e,x-,,, _ I

So if er; > 0.813. the local entropy will be reduced by asserting :_, za-.
Similarly. we can consider the total Entropy of the Flow of Knowl-

edge into node _"from all other nodes. From (11) we can derive condi-
tions such that the assertion of nodes connected to node i will reduce

the Entropy at node _"from its Threshold Node Entropy:

Assuming :i : 1:
Then

z - _s e-_",,:,

In similar ways, the Threshold Net Entropy can be determined, and
Net Entropy reduction criteria developed from (13).



6. SEARCH TECHNIQUES FOR THE INTELLIGENT MA-

CHINE

Two random search techniques are compared here which may be

used to find the minimum entropy in the Organization Level of an intel-

ligent machine. By examining the active visible neurons in the minimum

entropy state of the network, one can determine the sequence of primi-

tive events which produce a string dellning an optimal task for an intel-

ligent machine. The techniques presented here allow escape from local

entropy minima, which lead to incorrect task decisions, by randomly

selecting states while searching for the global entropy minimum.

6.1 Simulated Annealing

One random search technique commonly used to find the global

minimum cost in a Boltzmann Machine is Simulated Annealing. This

technique simulates the annealing process of metal by probabilistically

allowing uphill steps in a state-dependent cost function while finding the

global cost minimum, or ground state. The algorithm allows control of

the search randomness by a user specified parameter. T. In true metal

annealing, this cost function is the Energy of the system. E. and T is

the annealing temperature (Kirkpatrick etal. 1983). This method can

easily be adapted for finding the minimum entropy of the Organization

Level of an intelligent machine.

Given is a small random change in the system state X, =

{zz,z2 ..... z,,} to X" and the resulting entropy change. &H. if

&H _< O. the change is accepted. If AH > O. the probability the

new state is accepted is:

pCX,.l = x_) = ,-_/K.T (ZB)

where Ka is the Boltzmann Constant and T is a user set parameter. By

reducing T along a schedule, called the annealing schedule, the system

should settle into a near-ground state as T approaches 0.

Another method for simulated annealing is discussed in (Hinton.

Sejnowski 1986). Using this method, if the entropy change between X,

and X" is _//'. then regardless of the previous state, accept state X_

with probability:

1

v(x,+_ = x') = z + e-=_,/T (17)

Since an intelligent machine consists of a set of binary states, it should

be noted that in both of the above methods. X_ is hamming distance

Z from X_ (Kamet el. 1985).

The process of simulated annealing escapes local minima through

its probabilistic random search, and probabiiistically convergences to

the global cost minimum. Under certain conditions (Gaman. Geman

1984). The next technique. Expanding Subinterval Random Search.

probabilistically guarantees convergence within a _ neighborhood to

the global minimum of a specified cost function.

6.2 Expanding Subinterval Random Search

A second technique for finding the global minimum value for a cost

function for a dynamic system is Expanding Subinterval Random Search

as described in (Saridis 1976). Using entropy as the cost function and

given a state X,. one may define the following random search algorithm

for an appropriately selected /J.

X,+z = iX; if H(X;)-S(X,) <2p (18)x, if H(x') - _(x_) > z_,

where H(Y) is the entropy induced by state Y = (Pz,_,...,Y,) and

X' is a randomly selected state vector generated from a prespecified

independent and identically distributed density function, defined by (5).

It is shown that:

llm [',ob [zz(x.) - H¢,. < 61= 1 (zg)

where /:{_|n is the global minimum entropy of the network. The exis-

tence of ['J"-m is proven in the cited work.

This method can be used on-line to find the global minimum en-

tropy in the Organization Level of an intelligent machine.

7. EXPERIMENTAL RESULTS

7.1 Simulation of Search Techniques

A net was created which recognized strings of 15 bit binary num-

bers. The net was formulated using the standard Energy methods found

in (Hinton. Sejnowski lg8fi). Energy was used instead of Entropy in

these simulations for two reasons. First. to compare the results of this

simulation to the results of simulations by other researchers, a standard

measure had to be used. Second. the method for creating regions of"

attraction in an Entropy based net is still being Jnvestlgated.

The net had three minima, corresponding to states

(100101000100010. 011101010010011. 000lI1000000t00). The re-

spective Energy values for these three states were (0.5. 0.45. 0.2)

Each simulation technique attempted to find the global Energy mini-

mum of the net. which was 0.2. Three cases were studied which varied

the depth and narrowness of the Energy wet[ for the global minimum
state.

Simulated Annealing was performed using the acceptance criteria

in (17). The system was cooled in accordance with:

T,(____= z
To log(z0+ t)

where Tl(t) --- temperature at time t

To -- initial temperature.

The net state changed in Hamming distance 1 increments.

Expanding Subinterval Random Search (Saridis 1976) was

slightly modified to reinforce the probabilistic selection of node states

which reduced the Energy in the net. The probability of" a node being

active as initially 0.5. When the Energy was reduced during search, the

probability of the node being reactivated became

PC = , = Z)= P( =,=1)+[1.0-P(=,=1)].0.1

if" the node was active, or

PC =, = Z) = P(_ = l) - P(=, = Z) .0.1

if the node was inactive.

Rgurea 3-8 present typical simulation results. In the first exper-

iment, the Energy well we$ smell and wide compared to later experi-

ments. The second experiment approximately doubles the well depth

and narrowness, end the third experiment approximately triples the

original values.

As one can see from the data. Simulated Annealing (SA) found

the global minimum Energy in the first experiment in approximately

an order of magnitude interactions faster than Expanding Subinterval

Random Search (ESRS). In the second experiment. ESRS converged

to the global minimum in an order of magnitude iterations quicker than

SA. In the last experiment. SA did not converge to the global minimum.

Also. it is shown that SA did not settle to the minimum Energy in any

of the experiments, while ESRS settled in every trial.

This experiment indicates that Simulated Annealing quickly finds

the global minimum if"this value does not reside within a deep Energy

well. Since SA searches locally for lower Energy states by changing

one node value at a time. it may not find a lower value when the search

must significantly climb before the minimum can be seen. Expanding

Subinterval Random Search will converge to the global Energy mini-

mum regardless of the depth and narrowness of the Energy well. but

converges slower than SA when this topology does not hold.

8. CONCLUSIONS

A mathematical theory for intelligent machines was proposed and

traced back to its origins. The methodology was developed to formu-

late the "_ntelfigent machine', of which an intelligent robot system is a

typical example, as a mathematical programming problem as using the

aggregated entropy of the system as its performance measure. The lev-

els of the machine structured according to the Principle of Increasing

Precision with Decreasing Intelligence can adapt performance mea-

sures easily expressed as entropies. This work establishes an analytic

formulation of the Principle. provides entropy measures for the account

of the underlying activities, and integrates it with the main theory of



"Intelligent Machines". Optimal solutions of the problem of the "intel-
ligent machine" can be obtained by minimizing the overall entropy at"
the system.

This formulation was proven to be applicable to the derivation and

design of parallel architectures for Machine Intelligence. The Boltzmann
machine was analytically derived from the definitions of knowledge flow
and Jaynes" principle of maximum entropy. An analytic formulation

was given to reduce the entropy due to knowledge flow between active
nodes. Two techniques. Simulated Annealing and Expanding Subin-
terval Random Search. were described. These techniques are used to
find the global minimum entropy of a Boltzmann Machine. Simulations

using these search techniques were conducted using Energy as a cost
function, and results indicate that ESRS converges faster than SA to a
global minimum if the topology contains narrow and deep cost wells.
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